深空探测自主导航的关键技术
量子惯性测量器件。在深空探测任务中,惯性导航系统也是不可缺少的导航方式,尤其在变轨和着陆阶段,惯性敏感器可用于测量探测器自身的转动角速度和受外力产生的加速度,经过导航解算之后可以提供探测器的速度、位置和姿态信息。传统惯性测量器件受体积、精度等的限制,在深空空间辐照、电磁干扰条件下,精度更是难以保证。近几年来,美英科学家提出了基于各种量子效应和微加工技术的新型惯性导航技术,称为量子导航。量子导航的关键器件主要包括原子陀螺仪和原子加速度计。
(1)原子陀螺仪。原子自旋陀螺是利用碱金属原子自旋的拉莫尔进动来实现角速度的测量。原子陀螺仪可分为原子自旋陀螺和原子干涉陀螺两类。原子干涉陀螺与光学中的Sagnac效应类似,经过激光深度冷却以后,原子会产生较强的相干性,物质波属性变得明显,利用这种物质波的干涉可以实现角速度的敏感测量。原子自旋陀螺有两种实现方案:一种是利用双核素法的核磁共振原子自旋陀螺,一种是工作在自旋交换无弛豫态下的原子自旋陀螺。
传统的陀螺仪零偏漂移最好可以小于,而原子陀螺仪的理论精度可达,可以大大提高惯性测量的精度。目前国外已经研制了样机原子自旋陀螺,并正在发展低功耗、小型化的原子自旋陀螺,我国北京航空航天大学也在开展原子自旋陀螺的研制工作。对于原子干涉陀螺而言,体积相对较庞大,稳定性也有待提高,因此后续的工作主要集中在小型化和提高稳定性等方面。
(2)原子加速度计。原子加速度计、重力仪或重力梯度仪也是利用冷原子干涉效应来实现的,因此其发展通常是伴随冷原子干涉陀螺仪的发展始末。其零偏漂移可以小于,比传统的加速度计低5个量级。利用高灵敏度的加速度计感应作用在探测器上的非重力,进而实现对随机扰动的建模或者补偿。
目前高精度的原子加速度计实验样机已经成熟,但是如何从实验室样机到实用的高精度加速度计测量设备、如何减少体积功耗以及成本、如何增强原子加速度计的稳定性是未来研制的重要方向。
X射线探测器。X射线脉冲星自主导航是一种精度极高的自主导航方式,而X射线探测器是脉冲星自主导航系统的关键部分。目前,研制中的X射线探测器主要分为三种,分别为气体探测器、闪烁探测器以及半导体探测器。复杂的深空探测环境以及深空探测任务要求X探测器具有高能分辨率、高时间分辨率、大面积、重量轻、体积小、无需低温制冷等特点。这就需要进一步提高探测器单位面积的探测效率,研究大面积MCP探测器拼接技术,解决碘化铯的潮解问题、缩短镀膜的时间和装配时间,提升探测器的信噪比等。
光学成像敏感器。深空探测自主导航系统对于光学敏感部件的精度和灵敏度较高、体积小,因此对于光学敏感器的光学、结构、机构、热控和杂光消除等有着严格的标准,对于这些关键性技术的改进将会推动深空光学敏感器研发工作。小型化和低成本是未来航天器发展的主要方向之一,因此微小型甚至纽扣式星敏感器必然会出现在未来的探测器中。利用纳米光学技术设计微小型星敏感器光学系统将是未来突破现有星敏感器成像机制的关键研究技术。此外采用新的高性能微型图像传感器,也是微小型星敏感器研究的重点研究内容。在探测器对姿态控制精度要求不断提高的情况下,提高星敏感器姿态测量精度是一项关键技术。采用多视场的光学敏感器感器设计方法,可以在不改变探测星等的情况下减小视场,保证星敏感器的姿态测量精度;提高星敏感器光电探测系统的动态性选用高灵敏度的探测器,减小电路噪声以及在轨高动态情况下杂散光对星敏感器的影响。
在深空探测器对姿态控制精度要求不断提高,对于光学敏感器的体积、光学结构、热控系统等有着严格的要求。为了减小敏感器的体积,实现敏感器的微小型,研制高性能微型图像传感器、利用纳米光学技术设计微小型星敏感器光学系统将是突破现有星敏感器成像机制的关键技术;多视场光学敏感器感器可以在不改变探测星等的情况下减小视场,保证星敏感器的姿态测量精度,也是目前研究的一项重点技术。为了进一步提高星敏感器姿态测量精度和动态性,如何减小电路噪声、如何减小在轨高动态情况下杂散光对敏感器的影响也是亟待解决的关键问题。
自主导航信息处理算法。导航信息的自主获取与处理是实现自主导航与控制的前提。为了提高自主导航系统的性能,必须对获取的各种传感器信息进行合理处理,从而提取高精度的导航信息。对于光学成像测量和图像导航,图像处理是是获取高精度的导航天体信息的核心;而对导航信息的处理,多信息融合算法是提高导航精度的关键。
2